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Discrepancy Indices for use in Crystal Structure Analysis. 
III. A Theoretical Comparison of the Normalized Indices 
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Theoretical expressions relating six kinds of normalized R indices and the parameter O'n(  = a~D) are 
derived and used to make a comparative study of the relative efficiency of these R indices in different 
crystallographic situations. It is found that the various R indices exhibit different properties in the 
various stages of structure analysis. In all stages the index based on intensity seems to be preferable to 
the corresponding index based on structure-factor magnitude. For structure completion and refine- 
ment of an incomplete model, the index nRI(1) seems to be the best. The indices Ra(1) and R~(1) are 
found to be best for the initial and final refinement stages respectively. 

1. Introduction 

The use of discrepancy indices (R indices) in crystal- 
structure analysis in the structure-completion stage as 
an index of the correctness of the trial model, and in the 
refinement stage as an index indicating the extent of the 
refinement process is well known. Different types of 
R indices such as the conventional R indices (Interna- 
tional Tables for X-ray Crystallography, 1959), Booth- 
type R indices (Booth, 1945; Wilson, 1969) and the 
fractional-type R indices (Srinivasan & Srikrishnan, 
1966) have been suggested for this purpose. The fol- 
lowing questions naturally arise. Are the different R 
indices equally powerful at various stages of structure 
determination? If they are not, which of the R indices 
are to be recommended for use in the various stages? 
In the present paper we attempt to answer these quest- 
ions with reference to crystals and models satisfying 
the requirements of the basic Wilson distributions 
(Wilson, 1949). Since the study of Srinivasan & Rama- 
chandran (1965a) of such crystals has shown that the 
conventional R index in the normalized form (see 
§ 2 for the definitions of the normalized indices) 
has certain desirable properties compared with the 
unnormalized form, we shall deal with the R indices in 
their normalized forms. One advantage of dealing with 
R indices in the normalized form is that they are a 
function of a single parametert  o'A(=o'lD), which 
takes care of the incompleteness of the model via the 
quantity o'x and the coordinate errors of the atoms in 
the model via the quantity D simultaneously. 

The factors that contribute to the value of any type 
of R index are (i) random errors in the observed in- 
tensities and (ii) deficiencies in the model arising from 
its incompleteness (i.e. non-inclusion of all the atoms 
in the crystal), errors in the atomic parameters, errors 

* Contribution No. 385. 
t See Srinivasax~ & Ramachandran (1966) for the physical 

significance of the quantity aa. See equations (1) and (10) for 
the definitions of o'a and D respectively. 

due to non-inclusion of bonding electrons etc. Since it 
is difficult to derive general theoretical expressions for 
any given type of R index taking into account all the 
different sources of error, it becomes essential to make 
the following simplifying assumptions. (i) The observed 
intensities are assumed to be known with perfect 
accuracy. (ii) We shall consider only two important 
types of deficiency of the model, namely incomplete- 
ness due to non-inclusion of all the atoms, and im- 
perfection due to random coordinate errors. In spite 
of these simplifying assumptions the conclusions 
reached regarding the relative efficiency of the different 
indices at various stages could be expected to hold 
good in practice. 

Since different workers have used different notations 
for the various R indices (see Table 1), it is essential to 
use a uniform symbolism to avoid confusion. In 
§ 2 we shall describe the symbolism that has been 
arrived at during a discussion with Professor R. 
Srinivasan. In § 3 we shall describe the method of 
obtaining expressions for the R indices in terms of 
the parameter aA. After a general discussion of the 
results in § 4, a comparative study of the indices 
in the structure-completion stage (i.e. a 2 increased) 
and the refinement stage (i.e. ([Ar]) decreased) is made 
in § 5. In this paper we shall use C and NC for 
the terms 'centrosymmetric' and 'non-centrosymme- 
tric' respectively and the abbreviation p.d.f, for 'prob- 
ability density function'. The other notation and 
nomenclature follow that in Parthasarathy & Partha- 
sarathi (1972). 

2. Notation for the discrepancy indices 

Let [FN[ denote the true structure-factor magnitude 
of reflexion H(=hkl)  for the given crystal structure 
with N atoms in the unit cell and let IF~,I be that calcu- 
lated for the imperfectly related model structure con- 
taining P ( < N )  atoms. Let a 2 denote the fractional 
contribution to the local mean intensity from the 
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atoms in the model  relative to that  in the true structure, 
so that  

cry= ([FC~lZ)/ (lF~lZ) =a~,/a~ . (1) 

The discrepancy of  the model  with respect to the true 
structure can be measured in terms of either one of  the 
absolute discrepancies Av and At, namely 

Av=IIF~I-IF~II, A,=II~-I~I (2) 

or either one of  the fractional discrepancies ~ and 
~ (Srinivasan & Srikrishnan, 1966), 

IF~I or IF~,I ' I~ or If, (3) 

where 'or '  in the denominator  of  (3) denotes that which- 
ever is greater is to be used. We shall define the R 
indices based on any one of the above discrepancies to 
be in the unnormal ized form. Srinivasan & Rama-  
chandran  (1965b, hereafter SR) considered a modified 
form of  the conventional  R index based on the dis- 
crepancy A~., namely 

A'v= IIFuI - IF~,I/a~ • (4) 

An R index based on such a type of  discrepancy is 
said to be in the normalized form, since the variables 
of  interest, namely IFul and [F~,[ satisfy the 'normaliza-  
t ion'  relation, 

(IF~I z) = k (lEVI z ) (5) 

where k =  1/a~ is the normal izat ion constant needed 
to make the mean-square values of  the structure-factor 
magnitudes of  the structure and model  equal. Srini- 
vasan & Srikrishnan (1966) later extended this con- 
cept to the fractional  type R indices. Thus we say that 
an R index is in the normalized form if it is based on 
any one of  the following discrepancies: 

A'~:IIFNI--IF~I/~h I , Aj:lI~--I~,l~hZl (6) 

' C 2 " IF~l or IF~l/a~ I~ or Ie/a~ 
(7) 

It is possible to define R indices based on the squares 
of each one of  the discrepancies defined in (6) and (7) 
Since Booth (1945) was the first to suggest an R index 
based on the squares of  the discrepancy of  the type 
([FuI-[F~,[) 2, we shall refer to such indices as Booth- 
type indices. Making  use of  the discrepancies in (6) 
and (7) and the concept of  squaring, eight possible 
types of  normalized R indices could be defined and 
six* of  these are given in Table 1 with their symbols. 

We have used post-subscript 1 to the R-index symbol  
to denote that the index is in the normalized form 

* Since a study of the other two possible indices sR~(F) 
and nR~(I) has shown that they are inferior to the six indices 
dealt with in this paper in several aspects, these two will not 
be considered. 

Table 1. Definition o f  different types o f  normalized R indices and their theoretical expressions for  crystals and 
models satisfying Wilson statistics 

To define the indices in the unnormalized form, set o-1 = 1 in the defining relations occurring in column 2. The results in the other 
columns do not apply to unnormalized indices. It may however be noted that the final expressions in columns 4 and 5 apply to 
unnormalized indices corresponding to a complete model since o"1 = 1 for such a situation. Note that for denoting unnormalized 
indices the post-subscript 1 is to be dropped [e.g. nR(F) etc.]. The index R,(F) has been denoted by R~ in SR and the index R~(I) 
by Rz in PS. Index nR(F) is denoted by Rn in Parthasarathy & Parthasarathi (1972) and by R~ in Booth (1945). Indices R(F), 
R(I) and nR(I) are denoted respectively by R, Ra and R2 by Wilson (1969). Indices R~(F) and R~(1) have been denoted by R~ 
and R~' respectively in Srikrishnan & Srinivasan (1968). Note also that v is defined by v=y~ if y~_< 1 and 1/y~ if y~> 1. Further 
o-~ + a~ = 1 and o",1 = 0-1D. The summation ~ is over the n observed reflexions. 

Notation Definition 
:~ ]IFNI- Ir~l/0-~l 

Rx (F) ~ IFNI 

(IF~I- IF$l/ax) z 
~R~ (F) y IF~I z 

1 [ IF.I-IF~II0-~ 
R~ (F) -n- ~" Fsl or IF[I/a, 

R1 (I) 

8R1 (I) 

7. IIN- H, Io~I 
EIN 

Y. (IN- x$/cri) ~ 

I p/0-t 1 I I u  - ~ z  

~- Y~ I I~ or r~/~12 
R~ (~r) 

Relation to 
normalized variables 

(lYN--Y$I) (lYnl) 
(Yu) (YN) 

( (y .v-  y~,)2)= (y])  

=2 - -2 (yp )  

=2-2(z~/2) 

( I  yN-y~e 
y N o r y $ ] )  

=a-(v)  

< l z ~ -  z$l > : < Iza21 > 

<(z~-z~,y> <z~> 
<z~> <z~> 

z N o r z $ l )  

= 1 - (v 2) 

Theoretical expressions 
C case NC case 

3o~n f l  2FI ( -k , -k ;  1; 0-Zax2)xdx 
]/'2.(]-Z ~a) - 2 

.... 2 ..... ' 0o ........ -V~=+-x~ (i  _-d~x2-i ~ ........ 

[ 2 -  4[o '~+aa  sin -~ (o-a)] 2 - 2  E(0-a)- 

1 -- 2 [an loge (20-n)+0-a sin -1 (0-A)I 1 --4o~B I t y~(1 +y~)dy~ o [(1 +"2~2 40-2.,21sl2 
J q ]  - -  A . Y q J  

4 0-B 
0-a 

7~ 

4 °3_ o~ 
3 

o'A ( 1-o'A ~ [1 loge ( 1+0-" / 2a2n - 4o'.zc [1+ -~-loge \ ~ - - / ]  20-B -0-n , - - a n  / ] 

A C 31A - 2* 
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(e.g. RO. The fractional type index is denoted by 
using an asterisk as a post-superscript to the R-index 
symbol (e.g. R*). The Booth-type indices are denoted 
by B pre-subscript to the R-index symbol (e.g. BR). The 
R index could be defined with either the structure 
amplitude ]FI or the intensity I and this is indicated by 
either F or I in parentheses [e.g. R(F) or R(I)]. 

3. Theoretical expressions for the R indices in 
terms of ~a 

Expressions for the R indices in terms of the parameter 
a a ( =  aiD) are useful since they could be used to study, 
from a theoretical point of view, the influence of both 
structure completion and structure refinement on the 
R indices independently. For obtaining such a rela- 
tionship, it is found to be convenient to relate first the 
R indices to the normalized structure amplitudes 
yN(=IFNI/a~) and y~(=lF~l/av) and the normalized 
intensities zN(=y~) and c ca ze(=ye). These relations are 
also summarized in Table 1. Making use of these rela- 
tionships, the various R indices are also directly ex- 
pressed in terms of the difference, product and quotient 
variables]" Ya, Yp and yq (or za, zp and zq), namely 

Ya=YN-Y~ ,, Yp=YNY~e, Y~=YN/Y~. (8) 

Z d = Z N _ _ Z ~  , __ c 2 c 2 z , -  zNzp =y~ , z~ = (zN/zp) =y~. 
(9) 

The p.d.f, of the latter variables obtained in the earlier 
papers (SR and PS) could therefore be used to obtain 
the relation of the R indices to oa. 

The values of RI(F) as a function of o a were obtained 
in SR from the p.d.f, ofya. An explicit expression has, 
however, been derived only for the C case (SR). 
Luzzati (1952) has evaluated R(F) for C and NC cases 
and his result, which is applicable only in the refine- 
ment stage (i.e., a2= 1), is covered by the more general 
treatment in SR. Chandrasekharan & Srinivasan 
(1969) have obtained graphs for RI(F) as a function 
of (IArl) for different values of a 2 and their results are 
valid for the two-dimensional case. Explicit expres- 
sions for R~(I) in terms of aA for both C and NC cases 
have been derived in PS. Srikrishnan & Srinivasan 
(1968) have derived by numerical methods the values 
of R~(F) and R;(I) as a function of aA for both C and 
NC cases, though no explicit expressions are available. 
They have also obtained graphs of R~(F) vs. ([Ar[) and 
R~(I) vs. ([Arl) for different values of o-, z and these 
curves are applicable for the two-dimensional case 
only. Parthasarathy & Parthasarathi (1972) have 
derived the expressions for the unnormalized indices 
BR(I) and BR(F) but not for the normalized ones 
BR,(I) and nR~(F). Thus, since explicit expressions for 

t These variables have been denoted by different symbols in 
the earlier papers (SR; Parthasarathy & Srinivasan, 1967, 
hereafter PS). The present notation is the one arrived at during 
a discussion with Professor R. Srinivasan. Such a change has 
been necessary to unify symbols used in different papers. 

the normalized R indices as a function of aA are avail- 
able only for R,(F) for the C case and R~(I) for the 
C and NC cases, the expressions for the other cases are 
derived in the Appendix. The final expressions thus 
derived are summarized in Table 1. 

4. Discussion of the theoretical results 

From Table 1 it is clear that all the R indicest depend 
on the quantities ax and D. For an incomplete model 
containing only P out of N atoms of the structure, the 
quantity a~ [see (1)] will be less than unity and this 
is generally the case during the initial stages of struc- 
ture analysis. For structures containing atoms of 
similar scattering power (e.g. most organic crystals) 
ax will be given by ~P/N, which is practically inde- 
pendent of (sin 0)/2. During the structure-completion 
stage as more and more atoms are added to the model, 
P -+ N so that a~ -+ 1. Thus, for the refinement stage, 
when usually all the non-hydrogen atoms have been 
located (with random positional errors) we can set 
a~ ~_ 1 and such a model is referred to as an imperfectly 
related complete model (Parthasarathy & Parthasa- 
rathi, 1972). During refinement of a complete model, 
the normalized index of a given type therefore becomes 
identical with the corresponding unnormalized index. 

The dependence of the R indices on the coordinate 
errors of the model is via the parameter D, which for 
the three-dimensional case is given by (Luzzati, 1952) 

7t3 (IArI)2H z] (10) D = e x p  [ - 4 -  

where H = ( 2  sin 0)/2 (=2s ,  say). As the model is 
refined, i.e. as (IArl) decreases, D--~ 1. Thus while 
D--0  for a completely wrong model, D = 1 for a com- 
pletely correct one. 

From the above discussion it is clear that the R 
indices are functions of the three quantities a~, (IArl) 
and (sin 0)/2. Thus to obtain the value of (IArl) for a 
model structure of any given crystal it is necessary to 
take into account the variation of R index with (sin 0)/2. 
For this the following two procedures could be adopted 
(i) The experimental values of a given type of R index 
are first calculated by dividing reflexions into narrow 
regions of (sin 0)/2. From a comparative study of the 
plot of the experimental R values vs. (sin 0)/2 with the 
theoretical curves obtained for different (IArl) values, 
the value of ({Ar[) for the model could be deduced 
(Luzzati, 1952). (ii) A more convenient method how- 
ever is to obtain ([Ar[) directly from the overall value 
of the R index calculated from all the observed reflex- 
ions as a single group (see Srikrishnan & Srinivasan, 
1968). If Hmax (=2Smax) denotes the maximum value of 
the reciprocal-lattice vector for the reflexions included 

t In the rest of our discussion the general term R index is 
used to denote any one of the R indices considered in this 
paper. However, when the discussion is specific with respect to 
a given type of R index, the exact symbol is used. 
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in the calculation of the R index, then the overall (or 
weighted) value of the R index, denoted by R, will be 
given by 

3 I Hmax R(a~, ( Idr l ) ,H)HZdH (11) 
/ ~ -  H3max ~o 

- 3 R(ar, (IArl),s)sZds (12) 
s max 

where the weight for a given H is taken to be the frac- 
tional number of reciprocal-lattice points in a thin 
shell of radius H and thickness dH. In all cases except 
~Rt(I) the values o f / ~  for various values of a~ and 
([Arl) are to be obtained by numerical integration of 
(12). Since at any stage of a crystal-structure analysis 
the valuest o f /~  and at will be known, it is always 
possible to arrive at the possible inaccuracies (([Arl)) 
in the coordinates of the atoms in the model. 

Since it is possible to obtain an explicit expression 
for 8/~t(/), we shall derive it presently. For  a NC 
crystal and model satisfying the requirements of Wil- 
son's acentric distribution, a~(=P/N) will be inde- 
pendent of H, so that from Table 1 we see that 

n/r~t(I) = (a~)u = 1 -a~(DZ)u .  (13) 

Making use of (10) and (12) in (13) we obtain 

3a~ I smax 
BRI(I) = 1 -- --S--- exp [-- 2~3(IArl)ZsZ]sZds 

Smax ,.0 

(14) 

which on simplification yields 

8/~(I) = 1 . . . . . . . . . . . . .  3az 
2S3max(27/:3) 3/2 (IArl)3 

, [_~zr_ erf (V'2-~3(IAr])Sm~x) - V2z?(lArl)Smax 

× exp{-2rc3(lArl)ZsZmax} ] . (15) 

Since for the C case nRt(I)=4a~/3 the expression for 
n/~t(I) will be -~ times the quantity on the right-hand 
side of (15). 

5. Comparative study of the normalized R indices 

We shall presently make a comparative study of the 
relative efficiency of the various normalized R indices 
for the following three situations: (i) structure com- 
pletion stage; (ii) refinement of an incomplete model; 
and (iii) refinement of a complete model. To facilitate 
such a study the theoretical curves of the overall R 
indices:[: for the following three situations have been 

t The quantity at could be evaluated at any stage of struc- 
ture determination from a knowledge of the known contents 
of the unit cell of the structure and the model. 

From (12) and (15) it is seen that the evaluation of /~ 
requires the value of 2. The curves in Fig. 1 are for Cu Ka 
radiation (2= 1.5418/~). 

obtained* : (i) /~ vs a~ when ( IAr l )=0"l  A; (ii) 
vs (IArl) when a~=0.5;  and (iii) R vs (IArl) when 
az=  1. It may be noted here that for situation (i) we 
have chosen a value of 0.1 A for (IArl), since during 
the structure-completion stage the positions of the 
atoms in the model suffer coordinate errors with 
(IArl)---0"l A, and that for situation (ii) we have set 
a~=0.5, since it corresponds to a typical model con- 
taining 50 % of the atoms of the true structure. It is 
obvious that situation (iii) corresponds to the usual 
stage of refinement of a complete model. The curves 
obtained for these three situations are shown in Fig. 
l(a)-(c) for the C case and in Fig. l ( d ) - ( f )  for the NC 
case. 

In order to make a comparative study of the various 
indices under different situations, we have to adopt a 
criterion for their relative efficiency. Since for a given 
situation the R index which decreases systematically 
as the relevant parameter is varied in the proper direc- 
tion (e.g. for structure completion ax z is to be increased 
and for refinement ([Arl) is to be decreased) is to be 
preferred, we shall adopt the criterion that the R 
index for which the curve has the largest slope (as the 
relevant parameter is varied) is the best for use under 
that situation. If two indices appear to be equally good 
from this criterion then we shall adopt the additional 
criterion that the index which shows a greater frac- 
tional fallt  is to be preferred. A study of Fig. 1 with 
this in view reveals the general feature that, for any 
given type of R index, the one based on I is preferable 
to the one based on F, during any stage of structure 
analysis. The following two points regarding the values 
of the R indices may also be noted. (i) For  any given 
situation, the value of an R index based on intensity is 
always greater than that of the corresponding type of 
R index based on structure-factor magnitudes, and (ii) 
the value of any given R index is always larger:[: for the 
C than for the NC case, provided the aspects for the 
two cases such as the value of a 2, (]Arl) and Sma x are 
the same. 

(i) Structure-completion stage 
The relevant curves are shown in Fig. 1 (a) for the C 

case and those in Fig. 1 (d) for the NC case. From these 
curves it is seen that, of all the indices, the index nRI(I) 
has the largest slope and hence is the best during this 
stage of structure analysis. It is also seen that both the 

* Relationship with the quantity a z is used in Fig. 1 instead 
of al since only the former is a direct measure of the fractional 
contribution to the local mean intensity. Also for crystals with 
similar atoms, a2(=P/N) is a measure of the fractional number 
of atoms in the model structure. 

t If R~ and Rn represent the values of an R index for two 
subsequent situations, then we define the fractional fall in the 
R index by lRtl - R,I/½[Rn + R,]. 

:I: A recent study of the 8R,(I) index for structures with 
heavy atoms has shown that this R index could have a larger 
value for the NC case than for the C case under certain cir- 
cumstances (for details see the last paragraph in Parthasarathi 
& Parthasarathy, 1975). 
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Boo th - type  indices show a systematic and  linear fall 
wi th  increasing value o f  a~ z. T h o u g h  the index R~(I) 
is seen to have  a slightly larger  slope than  BR~(F), the 
la t ter  shows a much  greater  f rac t ional  decrease for  a 

given increase o f  a2. Thus,  t hough  f rom the cr i ter ion o f  
slope alone,  R~(I) has a slight advan tage  over  8R~(F), 
the la t ter  may  be preferred owing to its larger frac- 
t iona l  decrease with increasing value of  o.2. It  is inter- 

I J ' ' ' ' t "°r~~ ' ' ' ' ' ' (d') ' 

, 0.4 

t 0 a , , 0 t  ~ l a 1 , * I o g, o'., J., o'., ,o o oi, o'., o., ~ ,.o 
~ z  -__ o-,2 _ _ _  

0 . 9 - -  

~ 0 . ?  

o., t 
0 

I , I ' I ' I , 

I 1 I I I 

o.o,  o.oe o'.,2 oI,6 o.2oi 
< l , , n O  - - - , . -  

I i I I ' ! | 

Nz= 0.50 (e) 
o.8 . . . . . . . . - J ~ - _  

0.4 ~ 3 - - - - - - - - - - -  ~ 

O.2F  ~ I I t I , I J 
0 0.04 0.08 0.1Z 0.16 0.; '0 ,~ 

<lzxnl> - - - -  

0 .8  

0.4 

O.2 

! ' I I , i 

~z=1 

(c) ,....~ 

6 /  

0.04 0.08 o.lz oa6 o.zo i 
( I A n l )  

0.6 

~ 0.4 

0.2 

0 
0 

' i I i I t I ' 

I--- ~CF) ~e = I (f) z ~e~,(w) (3) //,.J. 
4 ~  [1 ( I )  / 6 1  
5 ~,~,(1) / / 

0.04 0.08 0.12 0.16 0.20.~ 

( I  A'n.I ) 

Fig. 1. Representation of the overall values of the different R indices as functions of a 2 and (IArl) respectively. Curves in (a) 
(b) and (c) correspond to the C case while those in (d), (e) and (f) correspond to the NC case. Curves in (a) and (d) show R 
vs. a~ when (Idrl)=0"l/~, (structure-completion stage). Curves in (b) and (e) show R vs. (IAr[) when a~=0-5 (refinement of an 
incomplete model) while curves in (c) and (f) show R vs. (IArl) for a~ = 1.0 (refinement of a complete imperfect model.) The 
numbers 1 to 6 against the various curves are used to denote the R indices such that 1 = Rl (F), 2=8R1 (F), 3 = R~(F), 4=  RI tl), 
5 = nRl (I) and 6 =/~; (I). 
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esting to see that the conventional index RI(F) is 
inferior to the index nRI(F). It is also obvious that 
fractional-type indices R~(1) and R~(F) are the least 
suitable during this stage. 

(ii) Refinement of  an incomplete model 
The relevant curves are shown in Fig. l(b) for the C 
case and in Fig. l(e) for the NC case. A study of these 
figures shows that while R~(I) and R~(F) are practically 
insensitive to variation of (IAr[), the others show some 
decrease with decreasing value of (IArl) in the region 
(IArl) > 0.06 A. The rate of decrease, however, is most 
marked for the index nRt(/). Thus during the refine- 
ment of an incomplete model also the index BRI(/) 
seems to be the best. However, it is seen that all the R 
indices become insensitive in the region (IArl) < 0.06 A. 
Thus it appears that refinement of an incomplete model 
to high order could not be judged by the use of R 
indices. In this connexion it is relevant to note that 
the study of phase-angle distribution has also shown 
that the refinement of an incomplete model could not 
be rapid (Parthasarathy & Parthasarathi, 1974). 

(iii) Refinement of  a complete model 
It may be noted that for such a model, since a~ = 1, 

the normalized R index of any type becomes identical 
with the corresponding unnormalized form. The rele- 
vant curves are those in Fig. l(c) for the C case and 
in Fig. l ( f )  for the NC case. It is seen that for 0.05 < 
([Arl)<0"13 At  (which we shall refer to as the 
initial refinement stage for convenience) the index 
RI(I) has the greatest slope and hence is the best. It 
may be noted here that for ([Ar[)>0"13 A the index 
nRt(I) has a larger slope and a greater fractional fall 
with decreasing (IAr[) than RI(I) and hence is to be 
preferred. It is also interesting to note that from the 
point of view of both the slope and fractional fall the 
index BR~(I) is better than the conventional R index 
Rx(F) for (IArl)>0.08 A. In the range (IArl)<0"05 A 
(called the final refinement stage for convenience), 
Rf(I)  has the greatest rate of fall with decreasing value 
of ([Ar[) and hence seems to be preferable. 

To conclude we may state the following. (i) The 
properties of the various indices are found to be dif- 
ferent in the structure-completion and refinement 
stages. In all stages of structure analysis the index based 
on intensity seems to be preferable to the correspond- 
ing index based on structure-factor magnitude. In the 
early stages of structure analysis (i.e. structure com- 
pletion or refinement of an incomplete model) the index 
~R~(I) seems to be the best. For the initial refinement 
stage (i.e. ([Ar[) > 0.05 A) the index R~(I) seems to bethe 
best while for the final refinement stage (i.e. (IArl)< 
0"05 A) the index R~'(/) appears to be the best. 

t These values, 0.05 and 0.13 A, were arrived at from a study 
of the actual values of the slopes of these curves computed by 
numerical methods. 

Since the above study has shown that the Booth-type 
index based on intensity is the best during the structure 
completion stage it is useful to obtain expressions for 
this index for structures and models of any complexity. 
It will also be useful to make a comparative study on 
the relative efficiency of the normalized and un- 
normalized forms of this index for different types of 
structures during the structure completion stage. Such 
a study has been undertaken and the results will be 
reported in a separate paper. 

The authors thank Professor R. Srinivasan for having 
suggested the notation on R indices. One of the authors 
(V.P.) thanks the Council of Scientific and Industrial 
Research, New Delhi, India, for financial support. 

APPENDIX 

Derivation of expressions for the R indices 
as a function of 6A 

(i) Rl(F)and RI(I) indices 
Explicit expressions for RI(F) for the C case and 

RI(/) for both C and NC cases are available (see SR 
and PS). A convenient expression for RI(F) for the NC 
case can be derived as follows. From equation (24) 
of PS the joint p.d.f, ofyN and yf, for the NC case can 
be shown to be 

4yNY~ 
P(ymy~e)= ----a~-- exp {-(yZu + y~,2)/aZn} 

x Io[2CrAY~vy~,/aZ]. (A-l) 

Following the variable transformation method em- 
ployed in PS we obtain the joint p.d.f, ofy~(=yN +y~,) 
and [ydl(=lyN--yf, I) to be 

(y~ -y~) 
P(Ys, l Yal) = -  a~ lo[aa(y~ - y~)/2a~] 

x exp[-  (y~ +y])/2a~], Ya < Ys < co, 0 < Ya < oo 
(A-2) 

so that 

e(lYal) = P(ys, lYal)dya (A-3) 
ya 

lyal 3 aAy~(1--t z) 
o ,  f0/o[ ] 

[ y~( l+t  2) - t  2) 
2a~t 2 ] (!-t4 dt .  (A-4) )< exp [ 

The expectation value of lyal will therefore be given by 

(lyal)= Io  lYalP(lYal)dya. (A-5) 

Substituting (A-4) in (A-5), interchanging the order of 
integrations and carrying out the integration with 
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respect to Yd by using equation (23) on p. 330 of Erde- 
lyi (1954) and then using equation (vii) on p. 11 of 
Sneddon (1961), we obtain 

31/n a~ ll^ 2 F ~ ( - ¼ ' - ¼ ; 1 ;  ¢r2x2)xdx 
(lYal) = ---4- ~ V'O + x)(1--crZaxZ) z 

(A-6) 

Since R~(F)=([Ydl)/(yN) and (yN)= Vn/2 for the NC 
case, we obtain from (A-6) 

R~(F)= 3o-~ (i eFt(_4 x, _¼; 1; a]xZ)xdx (a-v) 
- - U -  ~o ..... l/(1 + x) ( 1 -  ~ x ~ )  ~ 

which is to be evaluated by a numerical procedure. The 
calculation in SR for this case involves a double inte- 
gral. 

(ii) BRI(F) and BR~(I) indices 
From Table 1 it is seen that 

BRI(F) = 2 -  2(zav/z). (A-8) 

Putting n=½ in equation (A-13) of PS we have for the 
C case 

(zlv/2) = 2 z r l ( - ½ , - ½ ;  ½; a~) ,  (A-9) 
n 

Making use of equation 3(v) on p. 43 and equations 
l(i) and l(vi) on p. 42 of Sneddon (1961) in (A-9) we 
obtain 

(z~/2)= n 2 [av+aA sin -1 (o'a)] . (A-10) 

From (A-8) and (A-10) it is seen that 

~ R I ( F ) = 2 -  4 [aB+aa sin - t  (O'A)] • (A-11) 
n 

Putting n=½ in equation (A-20) of PS we obtain for 
the NC case 

7~ 
(z~/Z)= -4- 2F1( a • 2, ½, 1; a ] ) .  (A-12) 

Making use of equation 3(ii) on p. 43 and equations 
l(viii) and l(ix) on p. 42 of Sneddon (1961) it can be 
shown that 

4 [E(aA) - a~ K(aA)]. z F ~ ( - ½ , - ½ ; 1 ;  a ] ) =  ~- ~ -  

(A-13) 

Making use of (A-12) and (A-13) in (A-8) we obtain 

BR~(F)=2-2  [E(o'A)-- a~ K(o'a)] . (A-14) 

We know that (see Table 1) 
2 BR~(I)  = (zz~)l ( z u )  . (A-15) 

Since for the C case ( z 2 ) = 4 ~  [see equation (40-b) 
of PS] and ( z } ) = 3  and for the NC case (z~])=2a~ 

[see equation (43-b) of PS] and (z~)=2,  we obtain 
from (A- 15) 

aRI(I)-----~6B4 2 for C , (A-16) 

=a~ for NC. (A-17) 

(iii) R~ (F) and R'~ (I) indices 
We know that (see Table 1) 

R~'(F) = 1 - (v)  (A-18) 
where 

IloyqP(yq I ~ ( v ) =  )dy~ + P(yq)dyq/yq. (A-19) 

Since yq and 1/yq obey the same probability distribu- 
tion law (Srinivasan, Subramanian & Ramachandran, 
1964; SR) the two integrals in (A-19) have equal values. 
Equation (A-18) can therefore be rewritten as 

(F) = 1 -  2 !'o yqP(yq)dyq . (A-20) R~' 

From Table l(b) of SR we obtain for the C case: 

p(yq)= 2aj  (1 +y~) (A-21) 
[ ( l + y ~ ) ' - -  ~- ~ " 4~T AYq] 

Substituting (A-21) in (A-20) we can rewrite it as 

R~'(F) = 1 -  - -  
2crn [l~ yqdyq 

n ,0 (Y~+2o'aYq+ 1) 

l yqdyq 
+ !0 -(-y~-- 20"Ayq+ 1) ] " 

(A-22) 

Making use of equations (70) and (75) of Peirce & 
Foster (1966) in (A-22) and simplifying the resulting 
expression by using equations (672) and (669) of 
Peirce & Foster (1966), we obtain 

R~'(F)= 1 -  2 [O'B 1oge (2as)+aa  sin -a (aA)] • 
7~ 

(A-23) 

For the NC case, R~(F) is to be evaluated numerically 
by using the result given in Table 1 (see Srikrishnan 
& Srinivasan, 1968). 

We know that (see Table 1) 

R~ (I) = 1 - (v z) (A-24) 
where 

@2)= g2y~p(yq)dyq+ g; P(yq)dyq/y~ 

=2Sloy~P(yq)dyq. (A-25) 

It may be noted that to obtain the above result we 
have used the property that yq and 1/yq obey the same 
probability distribution as before. Making use of 
(A-21) and (A-25) in (A-24) we obtain for the C case 
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4o'. ~1 y2(1 +y~)dyq 
R~'(I) = 1 -  

re ~o [( l+y~)Z- , 2 4a?4 yq] 

= 1 - 4 a ~  flo [1 + a a  { Yq 
zc (y2_ 2crayq + 1) 

_ Yq } 
( yZq + 2a a yq + 1 ) 

--½ -(y~--20"-ayq+ 1) + (yZq+2aayq+ 1) 

x dy o . (A-26) 

Making use of equations (70), (75) and (672) of 
Peirce & Foster (1966) in (A-26) and simplifying, we 
obtain 

__[ °a R'~(I) = 2a~ 4aBzc 1 + -~2 log~ ~-1 + aa 

(A-27) 

Substituting for the p.d.f, ofyq as obtained from Table 
(1 b) of SR in (A-25), changing the variable of integra- 
tion to x=y~ and using the result in (A-24) we can 
show for the NC case that 

ll (x z + x)dx (A-28) 
R~'(I) = 1 - 2 a  2 [i q22(1 ,2a])x  + x2] 3/2 " 

Making use of equations (2.264-6) and (2.264-7) on 
p. 83 and equation (2.261) on p. 81 of Gradshteyn & 
Ryzhik (1965) we can show that (A-28) reduces to 

R ; ( I ) = 2 a n [ 1 - a n l o g e \  o'n ) ] "  ( l + a B  (A-29) 
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Debye Temperatures of KI and RbI and the Anharmonie Parameters 
of their Potential Functions 
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Debye temperatures of potassium iodide and rubidium iodide have been determined by X-ray diffraction 
from room temperature up to about 800 K with methods due to Paskin [Acta Cryst. (1957), 10, 667-669] 
and Chipman [J. Appl. Phys. (1960), 31, 2012-2015]. The anharmonic contribution to the Debye 0 up 
to about 650 K is shown to arise essentially from thermal expansion. The plot of the reduced thermal 
e x p a n s i o n  O~/OCm/2 versus T/Aa202 is a common curve. Here ¢¢,,/2 is the value of a at T= ½Tin, Tm being the 
melting point. A is the mean atomic weight and a is the lattice constant. The values of the anharmonic 
parameters Y0 in the potential energy function of Willis [Aeta Cryst. (1969), A25, 277-300] are found to 
be -0.065 x 10 -12 erg .~-4 for KI and -0.116 x 10 -12 erg A-4 for RbI. 

Introduction 

Variation of Debye temperature 0M with temperature 
for KI up to about 700K has been investigated by 

Pearman & Tompson (1967), by Vadets, Giller, Kovich 
& Fedyshin (1970) and by Geshka & Mikhalchenko 
(1971). A similar study for RbI from 6K to 370K has 
been made by Hovi & Pirinen (1972). However, a high- 


